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The drift rate data derived from a manufacturer's testing
of 50 inertial grade gyroscopes, is analysed to derive a statistical
model for use as a predictor.

The initial hypothesis of a simple Random Walk is shown to
be a reasonable approximation to the actual data, and an explanation
of the discrepancies suggests a more complex model, but basically
of the same type.

The simpler Model is then used to generate "synthetic" gyro
drift rate data as an input to a computer simulation of an inertial

navigator, and the resulting system output errors are derived.
Thesis Supervisor: James E. Potter

Title: Assistant Professor of
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NOMENCLATURE

Time
) Ato discrete data time interval = 1 hour = unit of time
t1=1 Ato i=0,1, 2 ‘*n
Drift Rate
DR Drift Rate
MSDR Mean Squared Drift Rate
DR(ti) Drift Rate at the end of the ith interval from the start of

the test run.

Incremental Drift Rate

IDR Incremental Drift Rate, defined as the difference
between the Drift Rates at one hour intervals.

MSIDR Mean Squared Incremental Drift Rate

IDR(ti) = DR(ti) - DR(ti-l)

Drift Acceleration

DA Drift Acceleration, defined as IDR /At:o
MSDA Mean Squared Drift Acceleration
Ai = IDR(ti) /Ato

E(x) Statistical Expectation of the random variable x
Est(x) Estimate of E(x)

S2 Estimate of the Variance V

S Estimate of the Standard Deviation o

A random process is defined as being Stationary, in this thesis,

if the ensemble Mean and Mean Squared values are time invariant.

Only terms and equations not found in standard statistical texts

will be explained in detail.

vii



CHAPTER I

INTRODUCTION

1-1 Backg round

The output errors of modern inertial navigators are usually very good
indicators of the quality of the gyroscopes in the system. Constant errors in
the gyro output can be handled by a variety of techniques, but the problem of
random drift errors is far more complex. A knowledge of the expected ran-
dom errors is highly desirable for two reasons:

1) If the random errors can be "modelled", some insight may be gained
as to the causes thereof, and their subsequent elimination by improved design.

2) If the future random errors can be predicted in a statistical man-
ner, then valuable information is available to help answer such questions as:

i) the optimum time for external reset in moving base
systems.
ii) the frequency of gyro calibration in fixed base systems,

such as a missile in standby cperation.

One such way of representing the random errors is to derive a statis-

tical model, based on the analysis of a large quantity of gyro data.

1-2 Purpose of the Thesis

The purpose of this thesis is to analyse a set of gyro drift test data,
taken from one particular type of single degree of freedom gyros, for one !
particular orientation — Input axis along the local vertical. This is a very i
useful orientation as it is a difficult one to apply self-compensation techniques ‘
to, and consequently the gyro output may drift (randomly) over long time

intervals between corrections.

The interpretation of the developed models, as to the possible causes
of the errors, is left as an open question, but the use of a model as a predictor

is considered by its application as an input to a system simulation.

1-3 Summary of Conclusions.

The initial hypothesis of the existence of a simple Random Walk model




is found to be a reasonable assumption, when compared with the test data.
A development of the simple model is shown to explain certain discrepancies
with the test data, but the precise specification of this more complex model
is not derived, because the data was not a sufficiently large representative

sample of the statistical population.

1-4 Organization of the Thesis

The thesis is divided into two Volumes, Volume 1 develops the theory
and tests the Random Walk hypothesis — all the results are presented in
normalized form or with the classified scales deleted*. Volume 2 applies
the simple model as a system input and presents the results of the simulation.
Chapter 10 identifies the gyro type, and the specific units from which the data

was derived, together with the "missing scales" from Volume 1.

*Where, in Vol. 1, a scale has not been shown, a mark with the letter S
will be found - this is the identification for the value given in Chapter 10 of
Voi. 2.



CHAPTER 11

STATISTICAL MODEIS IN GYRO APPLICATIONS

2-1 Ideal Sequence of Events

To investigate fully and develop a statistical model for a particular
type of gyro it would be necessary to:

1) Generate several data records of the drift rate by test repetition
on one gyro, always maintaining the same axes orientation. Subsequently,
one would analyse the data and derive a statistical model.

2) Test the model developed in (1) with data taken from several gyros
(of the same type), whilst still retaining the same orientation.

3\
one, e.g., from a "tumbling" type of servo test).

4) Repeat (2) on data taken with the orientation of (3).

The procedure above could be continued as long as the data is forth-
coming, but even then, one would very clearly have to state the conditions
under which the developed model(s) is valid. For example, if the ultimate
system application subjects the gyros to some form of base motion not pre-
sent in the test conditions, then one cannot be sure of the value of the model

in predicting system errors.

2-2 Practical Analysis of Gyro Drift Data

Unlike a statistical analysis of (say) .radar noise, where a wealth of
data can be made available in a short time, the limitation of the outline given
in Section 2-1 is, directly, time, and indirectly, cost. Gyro drift is a very
slowly varying quantity and, in order to have sufficient data for analysis in one
run alone, the recording time is likely to be of the order of days. Therefore
the situation of -~ many runs -~ many gyros — many orientations, is, to say

the least, idealistic.

Consequently, one must specialize the analysis, and in considering
high precision, costly gyros, the analyst is usually in the position of having
to select data from what is currently available. This inevitably means data

generated for other purposes, (i.e., not for the specific purpose of analysis)

-3 -




in particular, the only likely source of any quantity is from manufacturers'

test data.

This raises the question of the validity of models produced from such
data. A statistical model is not a precise mathematical formula, and there-
fore it is necessary to produce tolerances, confidence intervals, etc., in
order to express the accuracy of the model. To do this, the data to be
analysed must be a true representative sample of the data that could be gen-
erated, but with manufacturers' data this is unlikely to be the situation. To
the manufacturer, naturally enough, "time is money" and to continue a test
over the full specified time when he knows, by observation of trends, etc.,
and from previous experience, that it will fail, is an unlikely occurrence.
Consequently, the analyst is usually only presented with data from gyros
that have passed the particular test — and this is not a true sample. How-
ever, this undesirable situation is somewhat alleviated by the fact that it is
only these gyros which will see operational use, so that the derived model
is still basically valid for prediction, provided that one states the condition

£
i
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applicabie, 1.e., ilai tlic moudel is valid rEvicolli-4* ich su
passed a particular test specification. If the model is to be used to give an
insight into the possible error causes, the false boundaries introduced by
the non-random sample, may lead to incorrect deductions. A possible
example of the effect of rejection of gyros is suggested in the analysis of

the Mean Squared Drift Rate in Chapter 6, para. 2-2.
Test data may be broadly categorised into two classifications:

1) Gyro axes in a fixed orientation with respect to the gravity
vector.
2) Gyro axes in a varying orientation with respect to the gravity

vector.

The data to be analysed in this thesis falls into group (1), and it can
be stated at the outset, that any model developed is unlikely to be applicable
should the gyro be used in an application of group (2). At first sight this

might seem to be a considerable limiting factor, but this is not the case, as

many inertial navigation systems are of the type which instrument a navigation

frame, wherein the gyros are maintained at a fixed orientation with respect

to the gravity field.




CHAPTERI1I

DESCRIPTION OF THE DATA TO BE ANALYSED

3-1 Test Configuration

The data to be analysed consists of a number of gyro runs performed
by one manufacturer in meeting a certain test specification. Each drift run
is conducted in a vertical earth-reference servo connection, with the gyro
Input axis orientated along the gravity vector, as shown in Fig. 3-1. The
drawing is simplified to show the basic features — for more detail on typical
test installations, and construction of single degree of freedom gyros Ref-

ences 1 and 2 respectively, are suggested.

With no input current to the forque generaivr, iluc gyio scnscs the
vertical component of earth's angular rate with respect to inertial space,
thereby producing an output from the signal generator, to cause the test
table to rotate accordingly. The table will also ratate due to miscellaneous
torques acting on the gyro, both constant and random, caused by a variety of
sources (e.g. mass unbalances, lack of rigidity, etc.) The particular advan-
tage of the test orientation is that gravity induced torques remain constant
and can therefore, be virtually eliminated by calibration procedures, by
applying a constant compensation current to the gyro torque generator. The
effect of earth's rotation is removed in a similar manner and therefore,
after this compensation, any motion of the test table will be due to small
fluctuating torques acting on the gyro (which can usually be considered ran-

dom in nature).

The measurement of the drift error to a high enough degree of
accuracy can only be achieved by an angular measurement; in this case a
signal from the Table Tracking Microsyn, proportional to angle, is fed to a
Recorder to give a continuous presentation of the Drift angle, relative to
some arbitrary datum position. However, in analysing a system perfor-
mance, the vector quantity of drift rate is always considered as the input
error source, consequently it must be computed from the gyro test output,
The procedure used is the very simple one of differencing the Drift angle

over hourly intervals.
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This is the form of the data to be analysed and one can see at the
outset, a possible source of error; namely, the data strictly represents the
Incremental Drift Angle over one hour steps, and this can only approximate
the average Drift Rate over one hour intervals. The actual pen records were
not observed, but assurance was given that the Drift Angle was smoothly and
slowly varying, so that it is presumed that the errors in the approximation
are, in general, small. Attention will be drawn later to certain specific
points on some gyro runs, where this assumption is probably not a good one

— these points are few in number.

3-2 Test Method

The total test time for each run is 70 hours, of which the first 10

hours is a calibration period. Initially, a "best estimate" of the required
compensation current is applied to the Torque Generator, based on a know-
ledge of earth's rotation and gyro ariits due to knowa cuusiaui €iior tSrgucs.
A correction is made to this estimate after 10 hours running, based on obser-
vations of the data record to date; and, with the assumption of only short term
tran sient:s, the time of this "cut" is considered as time zero for the drift test
proper, over the remaining 60 hours. The calibration correction is obtained
by computing the average of the drift rates (incremental drift angle) over 10,

one hour intervals.

The test parameter (see Chapter 2, para. 1) during this phase of the
manufacturer!s evaluation of the gyro, is the Root Mean Square (RMS) of the
Drift rates as computed over the 60, one hour intervals. This calculated

value is referred to as the "Figure of Merit" (FOM) for the gyro.

60

i LSy (pry®

i.e. FOM = = Z (DR,) (3.1)
1

where DRi = computed average drift rate over the

"i" th one hour interval.



3-3 Initial Observations of the Data

The data as supplied, consisted of hourly tabulations of the computed
drift rate for 50 runs, each run being for a different gyro. The 50 gyros were
all of the same type of single degree of freedom gyros and will be simply
indexed by the numbers 1 to 50 in the remainder of Vol. 1 — identification
of the type of gyro, and the manufacturer's unit number is given in Chapter
10 of Vol. 2. In addition to the tabulated data, a simple graphical plot was
provided, allowing a quick visual observation to be made of any obvious
irregularities, etc. Thus, excluding the calibration data, a total of 50 x 60
data points was available for the analysis. This might appear to be a large sam-
ple, but as will become evident in later chapters, this is not the case, as a
relatively small number of "irregular" points can have a marked effect on

the calculation of certain statistics.
The first general impressions of the data were:

1) Many of the gyro runs show a steady rate of change of the drift
rate (a ramp), with perturbations about this mean slope. Thus, in these
cases, the data gives the appearance of being somewhat less random, but
more deterministic, than one would have wished for at the start of a statis-
tical analysis. However, comparison of these ramps in the runs where they
occur, shows that the ramps themselves, appear to be random in nature.

2) Differencing of adjacent drift rate values (i.e., the incremental
drift rate over one hour intervals) does show a very random pattern.

3) Nine, out of the 50 gyros, have a Figure of Merit equal to the
specification tolerance. This seems a rather large proportion and one
wonders what figures would have been achieved if the test runs had been
repeated on those same nine gyros. This further supports the doubt expressed
in Chapter 2, para. 2, of incomplete samples, should an attempt be made to
link any model developed to the possible origins of the drift erro_rs.

4) Gyros, Nos. 6, 45, and 47, exhibit particular features which are
not readily observable in the other gyros.

i) Gyro No. 6 — considering the full 60 hour run and the 10
hour calibration period, this gyro shows far greater fluc-
tuations than any of the other gyros.

ii) Gyro No. 45 - from time 11 to 15 (5 points) the drift rate

shows a marked change in magnitude, from the values

-8 -



on either side of this range.
iii) Gyro No. 47 — at time 12 and 13 (2 points) the magnitude of

the drift rate is approximately three times that of any other

points in the run.

In the case of gyro 47, and to a lesser extent gyros 6 and 45, if the
values have been obtained by differencing the test table angles at one hour
intervals, they are likely to be considerably in error from the true drift
rate at the specified times. It is further hypothesised, for gyros 45 and 47
only, that these values may well represent some sudden change, either in

the test conditions, or due to some external influence.

All the data has been used in the analysis, as supplied - i.e., no
modifications have been made on the basis of unlikely values in small
samples. Consequently, attention will be drawn to calculations which are

heavily dependent on these 3 gyros, and alternative values are given with

certain points eliminated.



CHAPTER IV

THE MODEL HYPOTHESIS

4-1 General Considerations

Two different approaches can be considered in the analysis of test

data and the subsequent derivation of a statistical model.

1) First select a simple model to be tested — the hypothesis —
the choice of a likely model would obviously be based on the experience gained
from other work in the same field, and on one's own initial interpretation of
the data. Then promulgate as many tests as are considered necessary to

evaluate this model, conduct the tests on the available data and assess the

4

resulits.

If there is sufficient evidence to support the initial hypothesis, the

job is complete; however, more likely is the situation where some test
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whether to follow up the initial hypothesis with a somewhat more complex

model, but basically of the same type.

2) The alternative approach is to fully analyse the data, without
any preconceived ideas, then to test the feasibility of the results to support

different types of statistical models.

The second method is clearly the more unbiased (and time consuming)
approach, which is a very strong point in its favour when one considers that
the science of statistics is more of an art, and that preconceived ideas can
usually be supported by statistical "evidence". Nevertheless, in this thesis
the first approach has been adopted becaluse there is evidence to support a
likely initial hypothesis. In order to avoid the pitfalls stated previously, a
full presentation of the test results is given, good and bad, in order that the
line of inductive reasoning, subsequently developed, can be contested in open

court!

4-2 Fundamental Assumptions

Three basic assumptions are implied in the analysis that follows:

- 10 -



1) The data represents Rate errors due to the gyros alone, i.e., it
is not contaminated by errors introduced either by the test methods or the
test equipment.

2) Gyro drift can be considered as a random process.

3) The discrete data to be analysed represent samples from the

same statistical population.

The only justification for assumption (1) is that since the test equip-
ment was designed specifically for this type of gyro, one should not have to

consider it as a source of error at the start of an analysis.

Assumption (2) can only be supported in retrospect. Should a deter-
ministic trend (e.g. a steadily increasing mean drift rate, due perhaps to
the ramping noted in Chapter 3, para. 3 (1) ) be observed, then the
assumption would only be valid after mathematically removing the trend

from the data.

Assumption (3) implies that the gyros are very uniform in construc-
fion, so that a sample consisting of one run on each of 50 gyros, is equiva-
lent to a sample of 50 runs on one gyro. In less precise gyros one would be
unwise to make this assumption, and even with these high tolerance instru-
ments it must be applied with caution (Chapter 7, para. 3 investigates one
possible breakdown of this assumption). To clarify the importance of this
assumption further, if it is not valid, then one effectively has a sample of
one run only for each of 50 statistical populations, differing to various

degrees on which to base any conclusions.

4-3 Motivation for the Model Specification

From a review of the somewhat limited amount of literature avail-
able in this field, there was evidence to support a "Random Walk" type of

model (e.g. Refs. (3), (4) and (5) ). It was therefore decided to test the

validity of this model to the particular gyro data under investigation here.

'4-4 A Simple Random Walk

It is not intended in this thesis to develop fully the theory applicable
to simplified Random Walks; only relevant steps to support the tests actually
selected will be given in detail. For more detail in the application of this
type of model to gyro drift analysis, reference could be made to Ref. (6).

In order to illustrate the concept of the random walk the description given in

- 11 -



the introductory remarks of this reference is reproduced here, with the

permission of the author.

"Simplified Random Walk Process: This model consists of a man
who has been placed in a very long corridor. The man has been instructed
that at the end of each minute he must take one step forward, or one step
backward, or remain in whatever position he is in. It is further demanded
that his decision be completely random with an equal likelihood assigned to
each of the three alternatives. Thus, the average rate of the man during
any of the one minute intervals is: plus one step per minute (forward),
minus one step per minute (backward), or zero steps per minute (remain).
For purposes of simplification, it is further assumed that the man's rate is

constant over any one minute interval, "

4-5 The Model Hypothesis (see Nomenclature and Definitions on Page vii.)

The model to be tested is similar, but not as simple, as that out-
lined in 4-4. From the first inspection of the data (Chapter 3, para. 3)
the Drift Acceleration (defined as the Incremental Drift Rate /step interval,
and not the true acceleration) exhibited a very random pattern, whereas the
Drift Rate was less random in nature. A rough check of the Ensemble
average of the Mean Squared Drift Rate at various times during the test
runs, suggested that this statistic was likely to be time-varying. It was
therefore hypothesised that the Drift Acceleration was a stationary random

process and the Drift Rate a non-stationary random process.

The model, so far, conforms to that of Chapter 4, para. 4, when the
derivatives are considered, i.e., the Drift Acceleration is compared to the
rate at which the man walks, and the Drift Rate to the position of the man
corresponding to an integral number of step intervals from the commence-
ment of the walk, where the unit of time is now one hour. However, it would
indeed be fortuitous if the Drift Acceleration could be modelled by steps of
equal, but opposite magnitude, or zero; therefore the model condition will be
that the Expectation of the Mean of the Drift Acceleration (E(A) ) is zero, and

that the acceleration step amplitudes are statistically independent.

This model is illustrated by a typical picture in Fig. 4-1, together

with the Drift Rate resulting from this process, and is now summarized.

-12 -
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1) Drift Acceleration, as typified by Ai in Fig. 4-1, is a stationary

random process, with:

EA) =0 (4.1)

E(A) is obtained from the ensemble average over an infinite num-
ber of gyro runs at any time, t. Also, by applying the ergodic hypothesis

because the process is stationary,

n
E(A) = Limit 1 A =0 (4. 2)
n 1
: i=1

n -5 o

for each individual gyro.

2) The discrete values of the Drift Acceleration are statistically

independent,
Therefore  E(A;"A) = E(Az)réij (4. 3)
(
1 i=3j
where &6.. =
* 0 ifj

4-6 General Comments on the Model

It should be noted that the drift acceleration is defined as the
incremental drift rate (IDR) divided by the time interval (Ato), and that

A-At = DR(i-At) - DR( (i-1)-At)

The step interval Ato = 1 hour, so using this as the basic time

unit, the Drift Acceleration is numerically equal to the IDR over the "i" th

time interval,

The Drift Rate is shown as discrete values in Fig. 4-1. One might
infer from the drift acceleration that the continuous drift rate is being

modelled, but this is not the case as the data to be analysed is in discrete

- 14 -



form, hence the model is only applicable to the Drift Rate at one hour
intervals. The dotted lines shown on Fig. 4-1 represent the only estimate

one can make of the drift rate between the discrete time intervals.

As the Drift Rate is generated by a summation process, its value
will depend on an initial condition DR(t = 0). Since this is arbitrary it

will be specified for convenience as being zero.

4-7 Compatability of the Model with the Initial Inspection of the Data
(Chapter 3-3)

In Chapter 3, para 3 (4), it was noted that certain gyro runs had a

few "odd" points. Cne would like therefore, to have some knowledge of the
type of statistical frequency distributions that might be encountered, in

order that the significance of these points can be analysed.

The many possible sources of error present in such a complex
instrument leads to the prediction that the Drift Rate values will be
Normally distributed. This follows as a result of the Central Limit Theorem,
since the Drift Rate can be considered as the mean of many small errors,
and the distribution of the means approaches a Normal distributian. Now
consider the Model, and although it is not specified it is nevertheless im-
plied, that the model drift rate will tend to a Normal distribution, (Note:-
the IDR will have the same distribution as the drift acceleration; there

being only a constant factor Ato relating them).

Therefore one might consider at the outset, plotting the frequency
distribution of the drift rate data, to investigate if any of the data points
could reasonably be rejected. However, the model has specified that the
drift rate is non-stationary, therefore only the ensemble distributions at a
particular time can be considered (i.e., both the Mean and the Variance of
the Normal distribution could be time varying). Thus a sample would con-
sist of only 50 points, one from each gyro, and this is too small to consider
rejection limits at the start of an analysis. As was stated previously, none

of the original data points were modified.

The other feature, from the initial observations, was "ramping" of
the Drift Rate. Under certain conditions this is not incompatible with the

random walk model, as, although the Expectation of the drift acceleration

- 15 -



has been specified as zero, there is no reason why the actual drift acceler-
ation should not be a value of (say) one Standard deviation away from the
Mean, for certain lengths of time. This is equivalent to a ramp, and there-
fore the drift acceleration (or the IDR) distribution must be obtained and the
distribution statistics compared with the data drift acceleration, before the
data could be rejected on this basis. Nevertheless, one must still be mindful
of the possibility that the ramping may be due, in part, to some deterministic

non-random process.
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CHAPTER V

TESTING THE MODEL - THEORETICAL DEVELOPMENT

5-1 The model, as specified by equations (4. ]) to (4. 3), implies certain
statistical properties which can be used to test the degree of support of the
data to the model. The theory in this Chapter and the results in Chapter 6,
are presented in the order that the tests were conducted (not necessarily

the best order - in retrospect).

5-2 Drift Rate — Stationarity Test

5-2-1 Expectation of the (Mean) Drift Rate

From Fig. 4-1:

n
_N
DR(t) = ) A;At, (5.1)
i=1
(&
E[..,R’t \] = E \ A At ]
RS s

but, Expectation of a Surn = Sum of the Expectations

i. e. E(a+b+--) = E(a) + E(b) +.--- (5.2)

n
therefore, E [DR(tn)} = Z E<Ai"Ato )
i=1

[y

but, Ato is a constant, and from equation (4.1), E(Ai) =0
therefore

E [DR(tn)] = 0

but this is true for any value of n
hence E[DR] = 0 (5.3)
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5-2-2 Expectation of the (Mean) Squared Drift Rate

From equation (5.1)

2
[onc,)

1
1%

>

4

5

4

1
= Z Z j(Ato) (5. 4)

2 n n
therefore E [DR(tn)jl = E Z Z A, (at)
i= ' =

Using equation (4. 3) and equation (5.2), and with Ato constant

22
E!_DR(t ) = n-E(A%At2
L n j (o}
but t = n.At
n (o]
and E{DR(tn)] 2 . E [MSDR(tn)]
and E(A%) = E(MSDA) - time invariant for a

stationary process

therefore E| MSDR(t)] - E(MSDA)-t-At_ (5. 5)

or, since the Drift Acceleration has been defined as the rate of change of

the Incremental Drift Rate,

1]

E [MSDR(t)] E(MSIDR)- (5. 6)

t
At
o]

ie. E [MSDR(0)]

H
3
o

(5.7)

- 18 -



where k is a constant and, with unit time as the step interval of one hour,

is numerically equal to E(MSIDR); and t is an integer number of step intervals.

Thus, as stated earlier, the Model drift rate is a non-station-
ary process as, although the Mean is zero, the Mean Squared value increases

linearly with time.
The Est(k) will be defined in the tests as the estimate of the

slope of the MSDR /Time plot, and it is clearly the basic clue as to the validity
of the Random Walk hypothesis. For simplicity, the Expectation of Est(k)

will just be written as k.

5-2-3 Estimates of the Drift Rate Statistics

Since the model predicts a non-stationary process, Ensemble

averages, and not Time averages, must be considered.

R

Est[DR(tn)] = 4. Z DR(t) _ (5.8)
- =1

Est[MSDR(tn)J = 5 - Z [DR(tn)rJ (5. 9)

1

T

where r refers to Gyro number r, drift run

and R = total number of drift runs = 50

As a computer was used for all calculations the statistics of

Drift Rate Variance and Standard Deviation were also evaluated (see Nomen-

clature). R "
N [DR(tn)r - Est [DR(tn)] }
Sz(tn) _r=1 —
N 27
- [Est[MSDR(tn)] - {Esti_DR(tn)J} J RI_‘I (5. 10)

St ) = ‘/Sz(tn) (5.11)
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(Reference can be made to any standard statistical text for the proof of
equations (5.10) and (5.11).)

It should be noted that since,

EMDR) = 0 (5. 3)

Population Variance V = E[Sz(tn)J = E[MSDR(tn)] {(5.12)

Population St. Dev. ¢ (5.13)

]
)
—
&
o)
2
)

5-2-4 Acceptable Limits Based on the Model Hypothesis

-

Consider that E [MSDR(t)] is known.

This implies from equation (5.7) that k is also known, and

from equation (5.13)

o(t) = Akt (5.14)

But, from Chapter 4, para. 7, it was shown that the model

predicts that the Drift Rate at any time tn will tend to be Normally distri-
buted, and from equation (5. 3) the expectation of the distribution Mean is
zero. Therefore the probabilities associated with the Normal distribution

can be considered, viz,

68% probability that DR(t) lies within ¢ (t) of zero

95. 5% " v DR(t) " n x20(t)" " (5.15)
99, 74% " ] DR(t) " [ + 30’(1:) [T 1]
’ \
A !
68% probability that Est DR(t) is within + E_(_—t_) of zero |
AR
95. 5% n W Est DR(t) is within 22.Z8 0 v §5 14
R
99.74% n "  Est DR(t) " ] ¢3,ﬂn LU
AR /
- 20 -




For large sample sizes, i.e., large R, it can be shown that the Distribution

of Est MSDR(t) also approaches a Normal distribution,

4

with a Variance = 2.0 ()
R
—
and a Standard Deviation = Uz(t) ,\/.% (5.17a)
Therefore:
r R O'Z(t) )

68% probability that Est [MSDR(t)J is within =+ ’ VE of (5.17)

E ;yMSDR(t)] etc.

5-2-5 Acceptable Limits Based on Estimated Statistics

In general o(t) will not be known, only the Esto (t), i.e. S(t),
will be available from calculations. For large samples equations (5.16) and

(5.17) can be modified to the following statements, to a reasonable approxi-

mation.

68% probability that E|DR(t)] is within + 38 o Est[DR(t)] (5.18)
A/ R
cte.

68% probability that E [MSDR(I:)] is within :!:Sz(t)A/g of

Est [MSDR(t)] (5.19)

Terminology:

. t
(i) 4/?{‘) is called the Standard Error of the Mean.

(ii) SZ(t)' /% is called the Standard Error of the Variance, and since
in this situation E(DR) = 0, it could also be called the Standard
Error of the MSDR,

(iii) 2 Standard Errors of the Mean = 2- j&l etc.
R
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5-2-6 Sample Size

The equations given in 5-2-4 and 5-2-5 are only valid for
large sample sizes. For small samples, it would have been necessary to
consider Student's "t" distribution and Chi-Squared distribution, instead
of the Normal distribution in establishing the probability limits for the
Estimated Mean and Mean Squared values, respectively. In this analysis
the Sample size, for ensemble calculations (R), is 50. This number might
be described as the "in between® sample size, neither large nor small,
For no other reason than simplicity, it will be categorized as a large

sample in the subsequent analysis.

5-3 Drift Rate — Figure of Merit Test

In Chapter 3-2 the test parameter of the RMS value of the Drift
Rate aftexr 60 hours, was defined as the Figure of Merit. If this parameter
is now generalized to any discrete interval time t equation (3.1) can be

modified, for the Random Walk model, to:

TN

2

_
FOM(t ) = \/‘ﬁ%i' Z [DR(ti)] (5. 20)
.20

From equation (5. 5) it follows that,

2

"

E[DR(ti)] E(MSDA)- t. - At

i}

E(MSDA) - (At)) - i (5. 21)

Therefore, combining equations (5. 21) and (5. 2) with equation (5. 20)
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n
= E(MSDA) - (At2) . z <‘xﬁT>
: =0

E(MSDA) - (Ati) . =

= 1 . .
= 3 E(MSDA) t Aty (5.21)
In the terminology of equation (5.7)
: 2 1
E FOM(t)] = -Zk- t (5.23)

i.e. the slope of the (FOM) /T1me plot is a half the slope of the (MSDR) /Tlme
plot.

The E[FOM(t)] is a more complex expectation to evaluate, but to a
first approximation, it will be proportional to At . The ensemble estimate

of (FOIvI)2 is given by:

2 R = 2
Est[FOM(tn)] = & +1) = Z Z [DR(t.l)] . (5. 24a)
= ’:0
and Est(FOM) by,
R I 2
Esf(Fomiey)] = w ) [fmT S [DR(ti)] . (5. 24b)
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5-4 Incremental Drift Rate — Stationarity Test

From equation (4.1)
E(IDR) = Ato' EA) = 0 (5.25)

From equation (4. 3)

E[(LDR)Z] - E(MSIDR) = (At) . EA% (5. 26)

i.e., Incremental Drift Rate is a stationary process.

Estimates are similar to equations (5.8) and (5.9) for Drift Rate,

viz.
R
Est[IDR(’Cn)] = %~ Z IDR(t ) _ (5.27)
r=1
R
- 2
Est[MSIDR(tn)] = = Z [IDR(tn)r] (5. 28)
; r=1

The ensemble estimates when plotted against time should be a straight
line with zero slope if the model is valid, but, since a stationary process
is being tested, time averages can also be used for additional confirmation

if necessary.

5-5 Incremental Drift Rate — Correlation Test

Since the model specified that the Drift Acceleration in any given step
interval, was to be independent of that during any other interval, the same

must be applicable to the IDR.

The model IDR is a stationary process, therefore a measure of the
independance can be derived by calculating the Autocorrelation Function

(ACF) over time, where,

ACF(t,, ) E [IDR(ti) . IDR(tj)]

(Atg) : E[A(ti)- A(tj)]

1}
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Therefore, from equation (4. 3)

(At EAY . 6.

W

ACF(t;, t)

E(MSIDR) - & i

W

For a stationary,ergodic process the ACF is not dependent on the

absolute values of t:i and tj’ but only on the the time difference T (= tj - ti) .

E(MSIDR) whenTt = 0
i. e, ACF(t) = (5.29)
; 0 when Tt # 0

For discrete data, with zero mean, the estimate is given by,

N-n

—

Est [ACF(n)] = Nl_n . Z {IDR(ti) - IDR(t, + n-Ato)} (5. 30)
i=1

Equation (5. 30) can be evaluated for each gyro drift run, where N
is the total number of points in the run (N =59, as 60 Drift Rate points can
only give 59 IDR values). It can be seen from equation (5. 30), that the larger
the value of n, the fewer are the number of terms in the summation and con-
sequently the poorer the estimate of the ACF. Even with n=0, the estimate
is still only based on 59 terms, therefore, in an effort to improve this

accuracy, the Ensemble estimate can be considered, where

R
Ensemble Est[ACF(n)] - % z Est[ACF(n)] ] (5.31)
r=1

where r signifies the ACF of the P data run
and R = 50
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Notes: -

i) As the samples, both in time, and number of runs, are
neither very large, it would be wise to compare the gen-
eral trend of equation (5. 31), over the range of n selected,
with each of the 50 separate trends obtained from
equation (5. 30), before deciding that equation (5. 31) is
this best estimate. ——

ii) The "pre-requisite” for the ACF equations given above,
is that the IDR has been proven to be a stationary pro-

cess (Section 5-4),

5-6 Frequency Distributions

5-6-1 Drift Rate

In Chapter 4, para. 7, the expected ensemble Drift Rate
distribution was shown to be a Normal distribution, but, because the para-
meters specifying the distribution are time varying, the estimate of the
data distribution canonly contain one point from each gyro. A total of 50

points is too small for any accuracy in a histogram presentation.

5-6-2 Incremental Drift Rate Distribution

If the tests of Sections 5-4 and 5-5 are satisfactory, i.e.
the IDR is a stationary, independent over one hour intervals, process —
then there are 59 independent points in each of the 50 gyro runs. Each
gyro run is clearly independent of any other run, and, since a fundamen-
tal assumption was made that all data is from the same population, there
will be 2,950 independent data points. Consequently, a very useful histo-

gram can be drawn to indicate the expected IDR distribution.

Should the IDR be shown to be stationary but (say) corre-
lated over one hour intervals, then one would have to use every other point
in estimating the sample, as the total number of independent points would
have been reduced by a half. Thus, the longer the correlation in the test of
Section 5-5, the poorer will be the estimate of the IDR frequency distri-
bution.

Although, in the Model specification, a knowledge of the IDR
distribution was not required, it was nevertheless considered not unlikely
that it would be Normally distributed. As it will transpire (Chapter 6, para.7),

this may well not be the case.
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5-7 Drift Rate Correlation

5-7-1 Expectation and Estimation

If for the Model, the Drift Rate Correlation (COR) is defined

as,
COR(t_,t) = E[DR(t_) - DR{t )] where n > m
m’ n m n =
- n
then COR(t_,t) = E|DR(t ){DR(t ) + Z A At }]
m In m m J o
) j=m+1
- n
2 <
= E[DR(tm)J + E[DR(tm) L AjAto]
j=m+1
(5.32)
but DR(t_) = Z AAt
izl
therefore, from equations (4. 3) and (5. 2)
m n
E Z AAtL Z Al | = 0 (sincei #j) (5.33)
i=1 j=m+1
therefore, from the analysis in Section 5-2-2,
COR(t_,t) = E[MSDR(tm)] = ket (5. 34)
foralln> m
i.e. Foragivent_, COR(t ,t ) is a constant foralln> m (5.35)
m m’ n =

Toobtain an estimate of the Drift Rate Correlation, ensemble averages

must be used (non-stationary).
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Therefore

0| -
Ngt

Est COR(tm, tn) {DR(tIn)r . DR(tn)r} n>m
1

r

(5. 36)

where, as before, r refers to the Drift Rate during the rth run

and R = total number of runs = 50.

5-7-2 Acceptable Limits

To evaluate the Drift Correlation of the data, the results ob-
tained in equation (5. 36) can be plotted as a family of curves, each representing
a selected t and varying t_ (> tm) . Theses curves should approximate to a
straight line with zero slope, and the height of the line being equal to k- tn
(equation (5.34) ), where k is numerically equal to the expectation of the slope
of the MSDR /Time plot. However, the sample size is only 50, therefore it is
necessary to examine what would be acceptable as support for the Random Walk
hypothesis.

If limits are based on the model hypothesis and the model popu-

lation parameters are assumed to be known, then for the random variable x,

where
x = DR(tm) . DR(tn) n >m (5.37)
E(x) = COR(t_,t) = ket (5. 38)
n
r 2 ~ 2
E(x°) = E[DR(tm) {DR(tm) + Z AjAto ]
j=m+1
n
= =|prey?] + 25|ore,)’ ]
= E|DR({t )°| + 2E|DR(t ) A At
m m j o
j=m+1
n n
, = n
+ E[DR(tm) Z AiAj(Ato)Z]

i=m+1 jTm+1
(5. 39)
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Now consider the 3 terms in equation (5.39)

If the DR(tm) is Normally distributed (Chapter 4, para. 7 with
Variance ¢r2 and Mean, zero, then

o0
4 _ 7 4
E[DR(tm)] = ‘3 DRt )" « — =
o0

4
= 30
but, from equation (5.12)
2
¢ = E[MSDR(t )] = ket
m m
therefore E[DR(t )4] = 3k2t? (5. 40)
m m

By a similar analysis used in equation (5.33) it follows that

n
E[DR(t )3 A.At } = 0 (5. 41)
m j_ o
j=m+1
Also,
n n n n
2 — el = =2
E|DR(t ) - Z Z AAALY| = E[DR(t )2]- E Z Z A.AAt%
m i o m i o
iz=m+lj=m+1 i=m+lj=m+1
- 2 2
= ktrn [(n—m) . E(Ai) Ato]
= kt (t -t ) . E(MSDA) - At
m'nm m o
which, from equations (5.5) and _ .2
= k tm (tn_tm) (5. 42)
and (5.7) .
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Combining equations (5.40), (5.41) and (5.42) with (5.39)

2 2, 2 2
E =2kt + t
(x") k m k tm o (5. 43)
Therefore Variance (x) = E(xZ) - [E(x)JZ
which from
equations (5.38) and (5.43) = k° e (b +t) (5. 44)

But, Est [COR(tm, tn)] as given in equation (5.36) is a summation of 50

values of x,

therefore,

. _ Variance(x)
Variance of Est [COR(tm, tn)] = —=

K%t (6 +t)
m'm n
and Standard Deviation of Est [COR(tm, tn)] = (5.45)

- 30 -



CHAPTER VI

TESTING THE MODEL - ANALYSIS OF RESULTS

6-1 The interpretation of the results outlined in the preceding Chapter
is presented here with the emphasis on those results which basically sup-
port the Model hypothesis of Chapter 4; where obvious discrepancies with
the Model are present, a fuller investigation is delayed until Chapter 7.
All computer programs were run on an IBM 1620, and are presented in

Appendix B.

The scales (except time) have been intentionally omitted from graphs
for classification purposes, and are listed in Chapter 10 of Vol. 2. On
most of the graphs the computed points have been joined together by straight
lines only for ease of visual interpretation, and are not intended to portray

the statistical quantity between the discrete time intervals.

6-2 Drift Rate — Stationarity Test -

Test theory — Chapter 5, para. 2
Program numbers, 1, 2,3
Figs. 6-1 to 6-4

6-2-1 First Check

The ensemble statistics were computed (Program 1) of the
original Drift Rate data, i.e. the Mean, Mean Square, Variance and
Standard Deviation of the drift rate at the discrete time intervals (equations
(5.8 to (5.11) ); however, difficulty was found in relating the results to the
Random Walk model, where it was specified (arbitrarily) that the drift rate
was to start from zero. This is illustrated in Fig. 6-1, where the MSDR/
Time curve is plotted (note: the first data point available is att = 1). From
Chapter 5, para. 2-2, the model predicts that the MSDR should be linearly
increasing with time. Inspection of Fig. 6-1 suggests that this straight line
may be present, but with a slight curve upwards with time. The questions. to
be answered are: What does the non-zero value at t = 0 signify (assuming a
linear projection back in time, from the first plotted point) ? Is this indica-

tive of a stationary drift rate component as well as a non-stationary one
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(possibly a Random Walk)? The questions cannot. be satisfactorily answered
at this stage and will be delayed until Section 6-2-2. It was theorized that

the results reflected that calibration methods (Chapter 3, para. 2), and that

a 10 hour calibration period is insufficient to remove any constant drift rate
component from the subsequent data run proper, particularly if the drift rate
is a non-stationary process. Therefore, in order to test the hypothesis that a
Random Walk is representative of the major component of drift rate variations,
it was decided to force the data to zero at the start of each run by sub-
tracting the first drift rate data point from all other values in the same run.
Unless otherwise stated, all remaining tests were applied to the data, modi-
fied in this manner. Furthermore, for consistency in the time scale, since
the DR(tl) have been forced to zero, this point will be considered as time

zero for all subsequent tests (e.g. DR(th) of the original data now becomes
part of the data at t = 9, where new DR(t9) = original DR(t
DR(tl), etc.).

10) - original

The results of recalculating the ensemble statistics — zero corrected
(Program 2), are shown in Figs. 6-2 to 6-4.

6-2-2 Estimate of the Mean Squared Drift Rate
The MSDR /Time plot of Fig. 6-2 shows, for the most part, a

linearly increasing trend ctonsistent with the Random Walk hypothesis. To
bring out the discrepancies more clearly, a straight line was fitted to the
plot, passing through the origin, using the least squares technique (Program 3).

The errors in the fit of this line can be considered in three separate ranges.

i) Times 11 to 14 deviations above
ii) Times 25 to 49 deviations below

iii) Times 56 to 59 deviations above

An attempt was then made to relate these discrepancies back to

the original data with the following conclusions:

i) The values at times 11 and 12 (12 and 13 of the original data)
can be directly attributed to the two "wild" points on Gyro No. 47 (Chapter 3,
para. 3(4) (iii) ), and the peak is considerably reduced if these values are
eliminated from the calculations. Deviations at times 11, 12, 13 and 14 are
still further reduced if Gyro No. 45 is also eliminated (Chapter 3, para. 3(4)
(i) ).
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ii) The other two ranges cannot be attributed directly to a
few individual points. If the Model is correct, one possible explanation
(and it is stressed that this is onlya theory) is that the data shows the effect
of incomplete samples (Chapter 2, para. 3). If the rejection zone based on
past experience were to cover the range of times 25 to 49, and the rejected
gyros had been included in the population from which the test data was sam-
pled, then the deviation in this range might have been reduced. Now, sup-
pose a gyro under test was showing a tendency to drift off in a more pronounced
manner than normally expected, towards the end of the test run; then one would
be loathe to abort the run, in the event that it might still remain inside toler-
ance. This latter situation could possibly account for the deviations in the

range of times 56 to 59!
Conclusions

1) The MSDR /Time plot supports the Model hypothesis, the
discrepancies could only be investigated further by larger samples and longer
runs.

2) If the slope of the least squares straight line is designated
Est(k) then limits can be considered. For ease of presentation assume
k = Est(k), then from equations (5.14) and (5.17a), with R = 50,

SD(t) = Standard Deviation(t) = Esi

The following observations were made (reference equation
(5.17)). All Est [MSDR(t)] points fall inside the limits given below, except

at the tabulated times.

LIMITS Time at which Est [MSDR(t)] outside limit

(max. possible = 59 points)

= 1 SD 1, 2, 3, 11, 12, 13, 14, 58
x 2 SD 1, 2, 11, 12, 13,
* 3 SD 12, 13

The + 25D limits are shown on Fig. 6-2.
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3) The slight curvature from t = 0 to 3 may indicate a
stationary drift rate component or some correlation in the Random Walk
drift acceleration, but it was not considered significant at this stage to

investigate further (Chapter 7).

6-2-3 Estimate of the Drift Rate Mean

The first check applied to the Estimated Mean Drift Rate /
Time plot was to test the Model hypothesis

EMDR) = 0 (5.3)

This check was combined with the Est(k) derived in Section 6-2-2 and, as
before, it was decided to use the expected value of k as being equal to Est(k).
From equations (5.14) and (5.16), with R = 50, it follows that the Standard

Deviation of the population of the Est DR(t) is given by 4 ’—% , and the Mean
of this population is zero. As can be seén from the plot in Fig. 6-3, all
the Estimates of the Mean Drift Rate fall within the 2 Standard Deviation

limits as drawn.

Another feature observable in Fig. 6-3, is the possibility
that some deterministic trend may be present as illustrated by the non-ran-
domness of the Est[DR(t)] about the E(DR) of zero. This could be
explained, in part, by & time correlation of the Drift Rate (Section 6-8).

It is also interesting to note that, for the Random Walk model, should the
drift rate (for any reason) be off from zero by (say) "a" degrees jhour, then
the most likely value of the drift rate at any later time is still "a" degrees/
hour, even though E(DR) = 0 (cf. from t = 38 to 59).

Conclusions
1) The data does not contradict the Random Walk hypothesis
when combined with the Slope of the MSDR /Time plot, the test being applied

at the "2 Standard Deviation of the Mean" level.

2) The possibility of some deterministic trend, e.g., a non-
zero mean "ramp", cannot be eliminated unless more data is included in the

sample.
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6-2-4 Estimate of the Drift Rate Frequency Distribution

It was shown in Chapter 4, para. 7, that the Model hypo-
thesis implies that the drift rate will tend to a Normal distribution, but with
a time varrying Standard Deviation. To test this statement, the Ensemble
drift rate distributions were evaluated at 5 different times and the results

are plotted in histogram form in Fig. 6-4.

Conclusions

1) Because of the small sample for each distribution (50
points), the only reasonable comment in support of the hypothesis of a
Normal Distribution, is that it has not been disproven.

2) The distributions do become "flatter", the larger the
value of t, in accordance with an increasing standard deviation, and if a
Normal distribution is present, then, with this small sample, it would be
unlikely that any points would fall outside the 3 standard deviation value -

only one point did, gyro 45 at time 14 (15 on the original data), as shown in
Fig. 6-4.

Note: On Fig. 6-4, the estimated Mean has been shown dotted,
with the "+ 2 Standard Error of the Mean" range shown at the top of each

distribution. This range has been calculated in accordance with equation
(5.18), viz.,

2-s(t)

VR

where s(t) is the computed estimate of the ensemble standard deviation at

2 St. error of the mean =

time t (equation (5.11) and Program 2). In all cases the + 2.5(t) range

R
encompasses the zero drift rate level, which gives additional support to

Section 6-2-3 (where the population statistics were assumed to be known).

6-3 Drift Rate — Figure of Merit Test

Test theory — Chapter 5, para. 3.
Figs. 6-5 and 6-6
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2. .
The Est(FOM) ~ is clearly an easier parameter to investigate, as the
2 . . . .
Random Walk E(FOM)  is a straight line (equation (5.23) ). Equation (5. 24a)

can be modified by reversal of the summations to:

2
Est [F OM(tn)]

w»—-

B R 2
Z Z [DR(t)]
i=0 r=

|

which, from equation (5. 9) st [MSDR(ti)] (€.1)

Therefore, this estimate can be directly computed from the results in
Sections 6-2-1 and 6-2-2. The stimates of the squared Figure of Merit are
shown in Fig. 6-5 for the original data, and in Fig. 6-6 for the zero corrected

data. To test the Random Walk hypothesis,

E[FOM(t)] £ EL (5. 23a)

a straight line must be fitted to the data and passing through the origin of the

graph in Fig. 6-6; however, implicit in the usual methods of least squares

fitting. is that the deviations of the data from the fitted line be independent from

each other. But, from equation (6-1) it can be seen that a curmulative error
can be present, thereby invalidating the least squares {it to the Est(FOIvI)Z
data.

Consider, in eguation (6-1) that
Est[MSDR(ti)] = E[MSDR(ti)] + e,

1

where the e;s are independent errors.

2

then Est [FOM(tn)]

n L
Z r«:[r\/xsxm(ti)]+;}-r-T Z e,
=0 :
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n

. _ 1 N

if fn = =71 L e; (6.2)
i=1

then, even though the e;s are independent, it can be seen that the

fns will not be independent.

The straight line through the origin shown in Fig. 6-6, is the value
predicted if the Random Walk model is valid (equation (5. 23a), where the
value of k=Slope of the MSDR /Time plot). The poor fit for the smaller
values of t is explained by equation (6-2), as should e; be continuously
positive over the early range of time, then e may become large. It can
be seen from Fig. 6-2 that this is the situation, e; is positive up to time 21,
As t becomes large, it would be expected that the e;s from 0 to t, would have
an average coming closer and closer to zero, and hence this explains the
much better fit of Est [FOM(t)] 2 for large t.

Conclusions

The (FOM)2 parameter was not calculated to provide additional
proof as to the validity of the Model hypothesis, but rather to give a com-
plete picture of the data, as this is the manufacturer's test parameter
(square root thereof). It supports the model to the same degree as the MSDR

does (this is not surprising as it can be directly derived from it — equation

(6.1) ).

6-4 Incremental Drift Rate ~ Stationarity Test

Test theory — Chapter 5, para. 4.
Program Nos. 4, 5.
Figs. 6-7 to 6-10.

6-4-1 Estimate of the Mean of the Incremental Drift Rate

The ensemble statistics of the IDR were calculated from equations
(5.27) and (5.28), Program 4, and the Est(IDR) /Time graph is shown in
Fig. 6-7, The Est [IDR(t)] is very randomly distributed about the Model

E(IDR) = 0 (equation (5.25) ), and with the assumption that the estimates
59

are uncorrelated (Section 6-6), the value of -5-% Z IDR(ti), will give a
i=1
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good estimate of the true mean ~ this value was very close to zero. The

Standard Deviation of the Random variable EST IDR(t) , (i.e., the Standard

error of the Mean), is to a good approximation, S(IDR) - where S(IDR)
= R

is calculated in equation (6.3). As can be seen from equation(51§ most of the

Estimates are within + one Standard error.

Conclusions

The Estimate of the Mean IDR supports the Model hypothesis very
closely.

6-4-2 Estimate of the Mean Squared Incremental Drift Rate

The model hypothesis requires that the IDR be a stationary
process, consequently the MSIDR should be constant with time. The first
impression of the plot in Fig. 6-8, is that this is not the case; however,
the following series of steps is offered in mitigation for the Random Walk

hypothesis.

1) Visual interpretation: If initially one ignores the three
peaks at time 9, 13, 15, then there does not appear to be an obvious trend
of the Est [MSIDR(t)] , then inclusion of the three peaks does not add a
trend.

2) Statistical interpretation: It was thought possible that
the peaks in the plot could have been caused by the sample size for each
estimate (50) not being large enough. To test this, it was assumed that the
IDR was Normally distributed (this is not implied in the model hypothesis
(Chapter 5, para. 6-2) ). One could now apply limits in a similar manner
to those applied to the MSDR plot, but at this stage the results of the next
test (IDR correlation) were available, indicating that IDR was reasonably
uncorrelated, therefore a different procedure was adopted. If the 2,950 data
points used to obtain Fig. 6-8, are independent and Normally distributed
then it could be expected (on the average) that only 8 of these points would
lie outside the bound of £ 3S from the Mean, where S is the Estimated
Standard Deviation of the 2, 950 points. But, from Fig. 6-7, the Mean is

effectively zero, and S is calculated from the results of Program 4, viz.
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59 -
S(IDR) = J%- 2 Var(t,) (6.3)

i=1

(since all points are assumed independent)
where Var(ti) is the Estimated Variance calculated in a similar

manner to equation (5.10);

however, it was . found that 39 points (cf. 8), fell outside this range.
The bound was then increased to £3.5S at which level not more than one
point would (on average) have been expected outside the range — there were
22. Therefore, either the IDR is not Normally distributed, or the distri-
bution tails are being weighted more than the remainder of the population
(which still retains the basic Normal distribution shape). At this stage it
was decided not to abandon the Normal distribution theory, as many of the

"outsiders" had their origin in the drift rate data points previously noted
for gyros 45 and 47 (Chapter 3, para. 3(4) ). The estimates of the MSIDR

were recalculated with these 22, out the total 2, 950 points, removed. The
corresponding modifications to the MSIDR /Time plot are shown by the

dashed lines in Fig. 6-8, and one would now conclude, that the modified data

is indicative of a stationary process.

3) Returning to the unmodified data, it was realised that,
being a "squared" statistic, perturbations would be emphasised. Therefore,
since the estimate of the Mean IDR is so close to zero (Fig. 6-7), the "non-
squared" statistic of the ensemble Standard Deviation can be considered as
a measure of a stationary process in this situation. The results (from
Program 4) are shown in Fig. 6-9, and the same type of perturbations, but
less pronounced, can be seen when compared to Fig. 6-8, However, one
can now see more clearly, that there is no obvious trend, other than a con-
stant zero slope, present in the data.

4) Another technique, when testing for a stationary, ergodic
process, uses statistic computed in time (cf. ensemble) as an indicator. By
choice of the computed statistics, one can still further smooth out any

perturbations caused by small samples. For instance, if the Running RMS
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of the IDR is plotted, it should very quickly, as time increases, tend to a
zero slope straight line — the time to achieve this, and the subsequent non-
smoothness of the plot, reflect the degree of support given to a stationary
hypothesis. In Fig. 6-10, the ensemble average of the Running RMS Incremental
drift rate computed for each gyro separately (Program 5), is shown in

Fig. 6-10, together with the Running RMS for 2 of the individual gyro runs
selected at random (shown dashed). The ensemble average supports the
stationary hypothesis and the Running RMS for each of the individual gyro runs
tended to a constant value in a very short time, except where isolated large
steps were present in the IDR data. This last point is illustrated by the plot
for Gyro No. 1, shown in Fig. 6-10, where the sharp rise at time 50, is
accounted for, by the IDR at that time having a value given by -5. 5S(IDR);

it was one of the 22 points referred to previously.

Conclusions

1) It is thought likely that a larger sample would have smoothed
out the perturbations sufficiently to support the Model hypothesis, that the
MSIDR is constant with time; and, combined with the Est(IDR) = 0 at any
time (Chapter 6, para. 4-1), that the IDR is a random stationary process.

2) It will later be shown (Section 6-7-2), that the IDR may
not be Normally distributed, therefore rejection of all 22 points in step (2)
of the preceeding analysis, may not have been acceptable. Nevertheless,
the three data points causing the peaks at times 9, 13, 15 in Fig. 6-8, will
be seen to be a long way outside the probability zone covering 2, 950 points,
even with the better estimate fo the IDR frequency distribution. Consequently,
it is considered reasonable to ignore these three peaks.

6-5 Comparison of the Estimates of the Mean Squared Incremental Drift Rate
and the Slope of the Mean Squared Drift Rate /Time Plot.

Test theory — Chapter 5, para. 2-2.
Figs. 6-2 and 6-8.

From equations (5. 6) and (5.7), with the unit of time defined as
At (1 hour).
o

k = E(MSIDR) (6.4)
where equation (6.4) is a numerical equality

and k = Expectation of the slope of the MSDR /Time plot.
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The least squares Est(k) was derived in Section 6-2-2, and to derive
a best estimate aof the MSIDR, the average was computed of all the
Est [MSIDR(t)’]' .

59
i.e. Est(MSIDR) = 3-19- Z Est[MSIDR(ti)] (6. 5)
i=1 '

(this value is shown on Fig. 6-8)

Equation (6. 5) requires that the Incremental Drift Rate be a stationary
process, and equation.(6.4) implies that the IDRs are statistically independent.

The results of these calculations can be expressed, relatively:
Est(MSIDR) = 2.24Est(k) (6. 6)

This proportionality factor of 2. 24 is obviously too large to support the
Model factor of 1.0. Elimination of the 22 points outside the range £3.5S(IDR),

(Section 6-4-2), would give a lower factor, the result being,
Est(MSIDR) = 1.73Est(k) (6.7)

Even with the data modified in this manner, the proportionality factor

of 1.73 is still too large.

Conclusions

1) Although the IDR is probably a stationary process, it does not
support the Model hypothesis that the Expected value of the MSIDR be
numerically equal to the slope of the MSDR /Time plot.

2) Further investigation of this discrepancy is delayed until Chapter 7,
where a more complex model is discussed. In the remaining tests of the .
validity of the simple model, where equations are used which imply the
equality given in equation (6. 4), the value of Est(k) will be used in calculations
and not the value of Est(MSIDR). This choice is made because the Model is

intended, ultimately, to reproduce the Drift Rate, and not the Incremental
Drift Rate.
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6-6 Incremental Drift. Rate — Correlation Test

Test theory — Chapter 5, para. 5.

Program No. 6.

Fig. 6-11.

As a zero Mean, of the IDR. has been established in Section 6-4-1,
the estimate of the Autocorrelation Function was computed in accordance with
equation (5.31), (Program 6). The program was arranged so that the indivi-
dual Autocorrelation Functions for each run (equation (5.30) ) were also
available for comparison withthe final ensemble average. The ensemble
estimate of the correlation functions is shown in normalized form (i.e.
ACF(O) = 1), in Fig. 6.11. A check of the 50 individual autocorrelation
functions showed that they were generally of the same form, so the ensemble
average was considered to be the best estimate. There was some tendency
for greater negative correlation to be present, but it was not considered at
this stage (Chapter 7).

The Model ACF (1) of the IDR is given in equation (5.29). In normalized

form this becomes:

1 when 1 =0
Normalized ACF (1) = (6.3)
0 when T #0

Conclusions

1) It would have been surprising if no correlation (when T # 0) had
existed in any of the estimated ACFs, and therefore one concludes from
Fig. 6.11, that the Random Walk hypothesis is not disproven by this test. To
this statement, the qualification must be added that a normalized ACF of
0.06 has not been considered significant.

2) The above conclusion will be re-examined in more detail in
Chapter 7.

6-7 Frequency Distributions

Test Theory — Chapter 5, para. 6.
Program No. 7.
Fig. 6-12.
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6-7-1 Drift Rate Distributions

Previously discussed in Section 6-2-4.

6-7-2 Incremental Drift Rate Distribution

Combining the theory of Chapter 5, para. 6-2 with the con-
clusion in Chapter 6, para. 6, the IDR distribution can be estimated from
2, 950 independent (to a good approximation) data points. This was done by
grouping the data points (Program 7) and the results are presented as a histo-
gram in Fig. 6-12. The vertical scale gives the number of points falling in
each rectangular block of the histogram, and all blocks are of equal width.
To give a better presentation of the major part of the distribuion, the "tails"
have been drawn separately; with their vertical scale magnified by 10 and
width scale diminished by 4.

The first impression was that the data might be Normally
distributed except for the long tails. However, a closer look suggested that
there was no point of inflexion (the one standard deviation point in the
Normal distribution). To confirm this, a plot of a Normal distribution,
using standard tables, with Mean, zero, and Standard Deviation given by
S(IDR) from equation (6.3), was superimposed on the histogram (Curve A},
and as can be seen, the fit is not very good.

An interesting point was then noticed. For a better {it to the
major part of the distribution, using a Normal curve, the Standard Deviation
needed to be smaller. Therefore a new Normal distribution curve was
superimposed (Curve B), with Mean, zero, and a standard deviation given by
4 Est(k), where k has been previously defined as the expectation of the slope
of the MSDR /Time plot. The fit would appear to be better than Curve A over
the majority of the Histogram, except for the tails (as was to be expected).
The significance of this result is that, based on the Model hypothesis, the
Variance of the IDR distribution (not necessarily Normal) is k. This can be
evaluated from equations (5.25), (5.26) and (6.4). The improved {it is a
very useful result and will be referred to later (Chapter 8, Table 8-1).

Returning to the correct estimate of the IDR standard deviation
it was thought that a better mathematical fit of the histogram would be
achieved by considering some other type of Distribution. The obvious choice

of a simple distribution is an exponential one, symmetric about zero;
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was given added support by replotting the histogram with a vertical logarith-
mic scale — ignoring the scatter of the tails,a very reasonable tri-angular
shape resulted. As this distribution is not usually given in standard statistical
texts, the theory is developed in Appendix A, where the probability distribu-

tion is shown to be

1 P 0'2
£(x) =J 5 ¢ e (A. 6)
2 o

and the boundary containing, on average, all but one of the 2, 950 IDR

points, is given by:
x = % 5,656 ¢ (A.9)
where o is the standard deviation of the distribution.

Now, if S(IDR) from equation (6.3) is substituted for o in
equation (A.9), it is found that only 6 data points lie outside this bouﬁdary,
which is a much more logical answer than the 22 points for a Normal Distri-
bution with a boundary of + 3. 5S(IDR), as used in Section 6-4-2. These 6

values are listed in Table 6-1, as functions of S(IDR).

Gyro Run No. Time IDR As A Function of S(IDR)
6 44 - 6.28
6 46 - 71.38
45 9 + 9.7S
45 15 - 8.38
47 11 + 5.9S
47 13 -10.2S
TABLE 6-1

Analysing these 6 points, it can be seen that the last 4 points
can be directly attributed to the visually observed "bad" drift rate points,
and the first 2 points to the Gyro with most fluctuations, as listed in
Chapter 3, para. 3(4). Also, the values at times 9,13, 15 are so large,
that removal of these points eliminates the 3 peaks at the corresponding
times on the MSIDR /Time plot of Fig. 6-8, which is a much. sounder

reasoning than that previously used in Section 6-4-2. A recalculation of

- 56 -



S(IDR) with these 6 points removed (equation (6.3) ) gave,

SUDR) gifiea = 0-94-SUDR) ..o (6. 9)
or in the terminology of equation (6. 6)
Est(MSIDR) = 1.98.Est(k) (6.10)

(since the Variance of the IDR differed only in the last figure, from
the MSIDR)

The value of S(IDR) ... . was considered to be the best
modified
estimate of the standard deviation of the Incremental Drift Rate, and conse-
quently, this value was substituted for o in equations (A.6) and (A.9) to
derive the estimated "mathematical® distribution of the Incremental Drift
Rate. The result (Curve C) has been superimposed on the histogram in

Fig. 6-12 and the fit to the actual data is remarkably close.
Conclusions

1) Although the IDR (or Drift Acceleration) distribution was
not specified as part of the model hypothesis (Chapter 4, para. 7 and
Chapter 5, para. 6-2), a knowledge of this distribution is required if ulti-
mately it is intended to generate synthetic data, representative of actual
gyro data.

2) The prior assumption of the IDR being Normally distributed,
is not supported by the actual data distribution (Curve A). A better Normal
distribution fit is obtained if a standard deviation, given (numerically) by the
square root of the slope of the MSDR /Time plot - i.e. m,. is used
(Curve B). The expectation of this last statistic is equal to the expectation
of the standard deviation of the specitied Model IDR. (Note: it has been

shown previously, that this value was not supported by the data (equation (6.6)).

3) The Normal distribution hypothesis was maintained in
previous tests, with the thought that the large tails might have been contributed
by "noise", introduced by the method of obtaining the IDR from the original
Drift Rate data. (Differencing is one form of differentiating; and differentiat-

ing is, inherently, a "noise" accentuating source.) However, from the .
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histogram in Fig. 6-12, it is not possible to extend this reasoning to
account for the large peak surrounding the Mean, zero, of the IDR.
Therefore an exponential distribution, of the form given by equation (A.6),
was fitted with a S(IDR) modified by the elimination of 6 (out of 2, 950)
unlikely data points. The closeness of the resulting fit was such that the
conclusion is:

If the incremental drift rate, as calculated, is a true repre-
sentation of the actual difference of the gyro drift rate over one hour
intervals, then this parameter has a probability distribution, to a very good

approximation, given by

1 “27'|"|
£(x) 3/ s e do (A.6)

20

where the best estimate fromthe data, for the variance 0-2, is, from

equation (6. 10),
Est(c?) = 1.98Est(k) (6.11)

(Note: equation (6.11) has been expressed in this form for classifi-
cation purposes only — Est(k) is given in Vol. 2. The Est(k) was not used,

in any way, to obtain the Est((rz). )

This conclusion was unexpected at the outset, and the closeness
of fit makes this a somewhat curious result, leading to the question as to

why this should be so? A possible answer is discussed in Chapter 7, para. 3.

4) The value of S(IDR)modiﬁed

of the Incr. Drift Rate in all subsequent calculations.

will be used for the St. Dev.

6-8 Drift Rate Correlation

Test theory — Chapter 5, para. 7.
Program No. 8,
Figs. 6-13 and 6-14.

It was stated in Chapter 5, para. 7, that a family of curves is probably
the most useful presentation of the Drift Rate Correlation test results.
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Eight correlation curves were computed (Program 8) from equation (5.36),
for values of tm - 5, 10, 15, 20, 25, 30, 35, and 40 (the data was zero-
corrected at time 1 of the original data, i.e. time 0 on the graphs). The

results for odd values of t  are shown in Fig. 6-13, and for even values in
Fig. 6-14.

The Model prediction is a straight line (equation (5.35) ), of magni-
tude k- t (equation (5.34) ), for any individual plot. Inspection of the plots
does not confirm or refute the straight line hypothesis, and therefore, the
distributions were considered (Chapter 5, para. 7-2). The expected Normal
distribution cannot be tested, as the points on any one curve are all a func-
tion of the data at the start of the run (tm) ~ this also explains the lack of
randomness in the calculated points. Tolerances have been shown on
Figs. 6-13, and 6-14, derived from equations (5.38) and (5. 45), where the
Est(k) has been substituted for k.

i. e. graph symbol p = Est(k) - trn (6.12)
graph symbol o = Est(k) \/——s5— (6.13)

For ease of presentation, integer multiples of ¢ calculated for t o=ty
(designated o-(tm), which enclose all of the points are shown at the start of
each curve, except for tm = 10. As can be seen from equation (6.13), this.
is the smallest value of ¢ (o increases with t and t, 2 tm). From the plots
it is observed that all 7 curves fall inside +2 o'(tm), and consequently, all

points will fall inside the true bound of = 2¢ (tn) .

For the plot starting att_ = 10, the correct bound of £ 2 O'(tn) is
shown dashed. The points which fall outside this bound are all within

+ 3 ,cr(,th) .

The final observation from the plots, is that there is a general ten-
dency for the results to be lower than the Model predicted value (x). This is
explained, in part, by many of the curves having an Est [MSDR(tm)] below the

predicted value, but a further explanation is offered in Chapter 7.
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Conclusions

On the assumption that the Drift Rate (and the Est COR(tm, tn) are
Normally distributed the results are in reasonable agreement with the

Model hypothesis.

Footnote to Chaptar 6:-

It may appear that this Chapter has been written to prove the Model
hypothesis, rather than to test it! However, all the facts that were available
have been presented, and it is left to the reader's own judgement as to
whether or not, he agrees with the author's reasoning,
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CHAPTER VII

FURTHER ANALYSIS OF THE DISCREPANCIES WITH THE

MODEL HYPOTHESIS

7-1 The theory of Chapter 5 and the analysis of the results in Chapter 6,
were both concerned with testing the specified Model; and the Conclusions
at the end of each section in Chapter 6 were primarily orientated to give
the answers "Yes", "No" or "Inconclusive”, to the question of whether or
not, that particular test supported the Model. In this Chapter, the empha-
sis is changed from "testing a Model", to "fitting the data", and the

theory and results presented here, are done so, in retrospect - i, e.

they gave the best answers of the many methods tried (cf. the chronological

presentation in Chapter 6).

7-2 IDR Correlation

The major discrepancy between the specified Model and the data
was in the disagreement between the estimated slope of the MSDR /Time
plot and the estimated mean squared IDR (Chapter 6, para. 5). With the
motivation provided by Reference 6, the IDR autocorrelation functions
were reconsidered, and for ease of reference, the previous results of the
computation (Fig. 6-11) of the normalized ensemble autocorrelations

(equation (5.31) ) are given in Table 7-1.
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IDR Ensemble Autocorrelations (normalized)

Time Difference _A_C_F_‘ Time Difference ACF

0 1.000 14 .002

| 1 -.054 15 .021
| 2 -.032 16 -.026
3 .015 17 .002

4 -.025 18 -.020

5 -.068 19 027

| 6 -.067 20 -.011
| 7 -.023 21 -.024
8 .008 22 .024

9 -.008 23 -.035

10 . 000 24 .026

11 .011 25 .030

12 -.031 26 .020

13 -.032 27 .022

TABLE 7-1

In the Conclusions of Chapter 6, para. 6, the level of correlation
in Table 7-1 was not considered significant, and IDR was treated as being
statistically independent over one hour intervals, thereby supporting the

Model hypothesis that

2
EA; © A) = E@AY . 5, (4.3)

Now, consider the situation where equation (4. 3) is not assumed to
be proven for the data. In consequence the Model hypothesis must be modi-
fied to:

- 2, .
EA, - A) = E(AT - C |j_i\ (7.1)
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where all the properties of the original Model are retained (in
particular that Drift Acceleration (and IDR) are stationary processes),

except those dependent on equation (7.1)

and C‘j-i‘ is the normalized autocorrelation function for a time
difference |j-i| (i.e. C_ =1, etc.).

From equations (5.2), (5.4) and (7.1) it follows that

2 2 2
E[DR(tn)] = 1-:[(A1 A, veer A ]-(Ato)
rn n-1 n"(n'l)
N2, T — 2
= E[Z Ai +2 ZJ Ai'Ai+1 + o0+ 2 L Ai'Ai+n-l ~(At°)
i=1 i=1 =1

E(A% - [nC_ +2(n-1)C, + +++-+ + 2(n-(n-1) 1Cy1]- (at )

(7.2)
Sincet =n-At., and IDR. = A, - At
n (o] 1 1 [o]
equation (7. 2) can be rewritten as,
n-l ¢
i
E[MSDR(tn)] = E(MSIDR){1 + 2 Z c, (1-1) ZIT:l; (7.3)
i=1

If the IDR is corrected over "a" intervals (i.e. Ci for (i> a) = 0)
a

then E[MSDR(tn)] = E(MSIDR) - {1 +2. Z c. (1 -;;) LD (7.4
i=1

For values of n> a + 1, equation (7.4) represents a straight line

(with a non-zero slope, and not passing through the origin on the MSDR /Time
plot).
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Inspection of equation (7.4) shows that (l—iﬁ) is always positive, and
therefore, a large negative Ci'(possibly more than one), would have the
effect of reducing the gradient. which, as can be seen from equations (6. 6)
and (6.10), is the required result for a better comparison of the Model to
the data.

7-3 Check on Gyro Uniformity

A large negative Ci, to support the analysis in Section 7-2, is not pre-
sent (Table 7-1), therefore the derivation of the ensemble average of the
Autocorrelation Functions was questioned., The results in Table 7-1, were
normalized on completion of the evaluation in equation (5.31). Suppose,
however, that the gyros were not uniform; more specifically, that the
MSIDR as computed for each gyro separately (i.e. a time average), did not
come from the same population — this was a fundamental assumption in
Chapter 4, para. 2(3). Then a better estimate of the Autocorrelation
Function would be to take an ensemble average of the normalized ACFs for
each gyro. Program 6 printed out each individual gyro MSIDR and nérmal-
ized ACF so this was a comparatively easy point to check. A histogram of the
MSIDRs for each gyro is shown in Fig. 7-la and it was noted that the 3
points remote from the other 47, were the MSIDR. For gyro Nos. 6, 45
and 47, each one of which contains 2 points of the outsiders given in Table
6-1. Elimination of these points and the recalculation of the MSIDR for the
3 gyros, based on 57 (cf. 59) IDR data points, gave the histogram shown in
Fig. 7-1b.

To evaluate Fig. 7-1b it was assumed that, regardless of the IDR
distribution, the MSIDR distribution should be approximately Normal (there
being 59 points in the determination of each MSIDR). The 15 gyros having
an MSIDR in the histogram block nearest to zero are contrary to a Normal
Distribution hypothesis, but it should be noted that all 15 points fell in the
upper half of the block. The Est [MSIDR] for the modified data (6, out of
the 2, 950 points, eliminated) is shown dashed on Fig. 7-1b, and the range
of £30 is shown at the top of the histogram where o is derived in
Appendix A, assuming the IDR to be exponentially distributed.

2 /5

Standard deviation (y) = o = (A.15)
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Therefore, if Est [MSIDR] is substituted for 0'2 and N = 59, T is

given approximately by

o = Est MSIDR

. (7.5)

Gl

6 gyros, out of the total of 50, had a MSIDR outside the = 3 ¢ g range
(all 6 were above + 3 o's), and therefore, it is possible that the gyros are not
uniform - this was a basic assumption in Chapter 4, para. 2 (Assumption 3).
Futhermore., .if the gyros are non-uniform, the exponential distribution of
the IDR could be attribuied to a summation of different Normal distributions
for each gyro (i.e. different Variances for each gyro). In an attempt to
investigate iurther, the uniformity oi the gyros, the distributions of the indi-
vidual gyro IDRS were considered. 6 gyros were selzeéted on the basis that
that MSIDRs for these gyros were spread throughout the range of the histogram
in Fig. 7-1b. The IDR distribution histograms for these gyros are shown in
Figs. 7-2 and 7-3; with the = ¢ points (o = JEst(MSIDE ) marked on the
horizontal axes. Also shown is the ratio of the MSIDR for the particular gyro,
to the Est [ MSIDR |

There are 2 possible alternatives to be considered:

1) The histograms all represent samples from an exponential
distribution.

2) The histograms each represent a sample from different statis-
tical populations (the populations being, probably, Normally
distributed).

Because of the basic similarity of the Normal and Exponential distri-
butions, and the small number of data points (59) in each histogram, no
positive conclusions can be made from the inspection of Figs. 7-2 and 7-3.
Noting that an Exponential distribution would have more points around the
mean (zero), more points in the tails and no point of inflexion, as compared

with a Normal distribution; it is suggested that better support is given by,

i) the 3 gyros in Fig. 7-3 to alternative (1)
ii) the 3 gyros in Fig. 7-4 to alternative (2).
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Conclusions

1) Doubt has been raised on the fundamental assumption of much of
the preceding analysis, that the gyros are uniform (i.e. all the data analysed
is a sample from the same statistical population). Because of the small num-
ber of data points in Figs., 7-1 to 7-3, the results are inconclusive, and further
investigation is beyond the scope of this thesis.

2) If the gyros are non-uniform, then it might be possible to "normalize"
the data for each gyro to achieve uniformity in any subsequent analysis;
however, a check on the ensemble average of the normalized ACFs for each

gyro, gave different, but no more predominant values of correlation (Ci) than
those in Table 7-1.

7-4 Reconsideration of the Autocorrelations of Table 7-1

As no large negative Ci is present in Table 7-1, the effect of several
small values was next investigated. A maximum correlation time difference
of 7 was selected (a = 7 in equation (7.4) ), based on the following retrospec-

tive arguments:

1) From time difference l to 7, there are six negative values
of Ci and only one small positive value.

2} From time difference 8 on, the correlations are much more
randomly distributed about zero, thereby tending to cancel out
in equation (7. 4).

3) The values for large time differences are based on a fewer
number of terms in the estimate (equation (5.30) ), and are
therefore less reliable than the small time difference

correlations.

Substitution of Ci fori=1to 7, in equation (7.4) reduces it to:

E[MSDR(tn)] = E(MSIDR) - (0.492n + 2.15) (7.6)

for n.28

Now substituting Est(MSIDR) from equation (6.10), (the estimate based
on 2, 944 out of the 2, 950 IDR points — see Conclusions (3) at the end of this
Section), for E(MSIDR) in equation (7.6),
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where Est(k) is the least squares fit for the slope of the MSDR /Time
plot.

Thus a close fit of the modified "correlated" Random Walk model to
the actual data will result. The MSDR /Time plot of Fig. 6-2 is redrawn in
Fig. 7-4, with equation (7. 6)(points for n<8 are calculated from equation

(7.3) ), and the least squares fit of Fig. 6-2, superimposed.

7-5 Conclusions (assuming Gyro Uniformity, Section 7-3)

1) The modified model hypothesis illustrates the probable cause of
the major discrepancy between the previous Model and the test data — the
change in Drift Rate (IDR) is not statistically independent over one hour
intervals.

2) The correlation is small but extends over several hours (7 was
suggested by the analysis). Because of these low values, the estimates of
the ACFs are probably in error, but the final result, expressed in equation
(7.6), is a good approximation to the data.

3) Two questions are raised by this analysis. One, can a better
estimate of the ACF be obtained, either by elimination of the "bad" data or,
preferably, by a bigger sample? Secoridly, is the IDR frequency distribution,
and its mathematical fit (Fig. 6-12), still valid? Neither question was
pursued further, but it is thought unlikely that the distribution would be
varied much, through having considered the 2, 950 points to be statistically
independent, if the correlation levels in Table 7-1 are approximately correct.

4) The Drift Rate correlation test results are also supported by the
modified Model, as revision of the theory in Chapter 5, para. 7, shows thatthe
expectation of the Drift Rate correlation is E [MSDR(tm)] at tm, as before,
but falling to a somewhat lower constant value at tn’ for alln >a + 1, where
a = number of steps over which the IDR is correlated. The change in the
expected level at tn, to that at tm, forn>a + 1, is a constant for all tm (i. e.
for all 8 curves in Figs. 6-13 and 6-14); but the value calculated for a = 7,
and using Table 7-1, was numerically equal to 1.1S(IDR), (or 1.55 NEst(k)),
which was too small to add any additional remarks to those of Chapter 6,

para. 8.
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5) If the IDR is correlated, the calculation of T in Fig. 7-1 would
underestimate the true value. A larger value of L would give support to the
basic assumption of gyro uniformity as fewer gyros would have an MSIDR

outside the £ 3 L boundary.
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CHAPTER VIII

SUMMARY CF RESULTS, AND VALIDITY OF THE PRCPOSED

STATISTICAL MODELS

8-1 Properties of the Proposed Statistical Models

8-1-1 Modell

A Random Walk type of model, having a representative sample
as shown in Fig. 4-1, The Model is completely specified by the "Drift
Accelerations", which are defined as the difference in the Drift Rates at one
hour intervals, divided by the time interval (one hour). The properties of

the "Drift Acceleration" (Ai) are:

1} The (Ai)s constitu

, and are statistically independent each
rocess, and are statisticall d dent of 1

o+

e a stationary, ergodic, random

other.

2) The Drift Acceleration is Normally distributed, with
Mean, zero, and a best estimate of the Standard
Deviation given by '/E_Aii—@\; where Est(k) is the

o
slope of the least squares straight line fit, through
the origin, for the Mean Squared Drift Rate /Time plot
of the analysed data. This data is the original drift
rate data as tabulated at one hour intervals, corrected
to zero by subtractingthe first data point from all

other points in the same run.

The other properties of the Model can all be developed from

these two conditions.
8-1-2 Model II

The basic specification of the Model, as shown in Fig. 4-1,
remains similar to Model I; however, the conditions (1) and (2) of Section

8~1-2 are now modified, so that:
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1)

2)

The (Ai)s constitute a stationary, ergodic,
random process, but they are not statistically
independent quantities. The level of correlation
is low, but extends over several hours, the best
estimate available is given by the correlation
figures from time difference 0 to 7, in Table 7-1,
resulting in an expression for the E [MSDR(tn)] ’
given by equation (7. 6).

The Drift Acceleration is "exponentially" distri-

buted, having a Probability distribution given by:

1 o
flx) = = - e (A. 6)
b

S L0

where the best estimate of ch is given by .
2 /A . . . .

S (DA)modiﬁed' t;us quantity being numerically
equal to ST(IDR) modified
Chapter 6, para. 7-2. This latter quantity is the

as derived in

Estimated Variance of the Incremental Drift Rate,
with 6, out of the total 2, 950 data points, eliminated
(Table 6-1).

8-2 Comparison of the Models With the Test Data

8-3 Use of Models

The various tests, and the comparison of the results with the Model

predictions, are summarized in Table 8-1.

As was stated in the Introduction, the use of the Models, to indicate
the possible causes of gyro drift errors, will not be pursued (obviously
Model Il provides more information in this respect).

For prediction, the Models serve a two-fold purpose:

1) For prediction of the Distribution of the gyro drift rate at some
future time, after correction of the instantaneous gyro drift rate to zero, a

diagram, such as Fig. 8-1, can be used. The interpretation of the diagram
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Comparison of the Test Results With the Model Predictions

TABLE 8-1
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Data Test Comparison: Test Results /Model Prediction
- Relevant
No. Description Fi MODELI MODELII
igures
== ===
. Expectation is
1 MSDR /Time 6-2 Good Good
2 Mean DR /[Time 6-3 Acceptable Acceptable
3 DR Distribution 6-4 Acceptable Acceptable
/Time
4 Mean IDR /Time| 6-7 Good Good
5 MSIDR /Time 6-8 Acceptable Acceptable
6-9
6-10
IDR Fair
6 | Autocorrelation 6-11 ‘| (in retrospect) Good
7 IDR 6-12 | Approximation Good
Distribution {(Curve B) (Curve C)
. . 6-13
8 DR Correlation 6-14 Acceptable Acceptabler
Translation (English /Statistics)
* s
by definition of the Model
Good . . . not statistically disproven
?zic:ptable; . . more data require, i.e. sample too small
Approximation . . . known error
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is based on equation (5.15), i.e. "At time T, there is a 68% probability
that the drift rate will be within +1 Standard Deviation from zero." The

SD curves have been computed on the basis of,

SD(t) = AEst(k) -t (8.1)
(cf. equation (5. 14))

which is a reasonable prediction based on the test data, and confirmed by
both of the Models. The curves are shown dashed after t = 59, as they

represent Model I prediction, and not the test data results (see Section 8-4).

2) The vital link missing in Fig. 8-1, is the relationship between
the gyro drift errors and the system output errors. This can be investigated
by using the Model to generate synthetic data as the input to a computer simu-
lation of the system (Chapter 9, Vol. 2). Model II is the better model to
use, but it has not been well defined by this analysis, and clearly it is
considerably harder to use as a data generator {(with correlation, and expon-
ential distributions, to be included), than Model I. The use of Model I would
ignore, completely, the correlation effects, and would approximate the
estimated IDR distribution by a Normal distribution. This latter approxi-
mation is a reasonable on.e as, from Curve B in Fig. 6-12, it can be seen
that, although it eliminates the tails, this is counteracted by the generation

of fewer points around the mean.

8-4 Validity of Models

The validity of a statistical model must be very clearly stated. In

addition to the discrepancies noted in Chapters 6 and 7, the following conditions

must be applied to the use of the Models developed in this thesis.

Models are only applicable,

1) To gyros of the specific type analysed.

2) To the conditions of the test configuration; shown simplied in
Fig, 3-1.

3) Over the time of the data runs (effectively 59 hours, from zero
correction).

Extension of the Models to applications outside these conditions (e.g.

when base motion present, or for longer times), may possibly be inferred

from the analysis, but certainly has not been proven.
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APPENDIX A

THE STATISTICS CF A SYMMETRIC EXPONENTIAL DISTRIBUTION

Consider
£x) = b x|
(x) = a-e (A.1)
This will be a Probability Distribution
0
if 3 f(x) dx = 1 (A.2)
- o0
X -b-x
i.e. if 23 a.e dx = 1
o
or b = 2a (A.3)
Now, since the Mean = 0, the Standard Deviation (¢), is given by,
X
c_z = 5 X% (%) dx (A. 4)
- o0
2 2 -b-x
= 2 .\ X -a-e dx
o
= 5-3‘3 (A. 5)
b
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Combining equations (A.1l), (A.3) and (A.5), the exponential probability
dis8ribution is given by,

gt

1

f(x) =[/—> - (A. 6)
20
and the area under this "normalized" exponential distribution is
X
F(x) = 3 f(x) dx
-
[ 2
_«/ 5 x
()
- - 1_%e for x > 0 (A.T)

Now, applying equation (A.7) to the IDR data (Chapter 6, para. 7-2), con-
siting of 2, 950 points, what is the boundary (¢ B o) at which there will be,

on the average, only one point present in the tails?

Since the distribution is symmetric, it is only necessary to consider the
"upper end” tail, containing % data point, i.e. that the upper tail encloses

1
an area = — % of the total area.

59
From equation (A.7) it follows that,

1

1-F@® = g3 (A. 8)
(=",
2
o T _ 1
i.e. e = 77950
) giving x = 5.65¢ (A: 9)
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or B = b5.65

(A. 10)

Consider the random variable :\c2 where x has the exponential distri-

bution of equation (A. 6)

since E(x) = 0
E(xY) = o° (A.11)
o0
¢ 4
also E(x4) = ) x f(x) dx
- 00
_ ]2
0 A 0’2 x
( 4 1
= 2 X — e dx
- 5 N2 o
o
) = 6ot (A.12)
2
) 4 2
therefore Variance (xz) = E{x) - [E(x )]
= 5 0'.4 (A.13)
and Standard Deviation (xZ) = 0'2 A5 (A.14)

If the random variable y is defined as the average of N independent

values of xz

then Standard Deviation (y) = o'2 2 - E(xz) > (A.15)

N N

and for large values of N the distribution of y will approach the Normal

° Distribution.
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APPENDIX B

FORTRAN PROGRAMS USED ON I BM 1620 COMPUTER
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C  PROGRAM 3 MSDR/TIME - LEAST SQUARES SLOPE

SUM Qe
DEN Oe
DO 10 N=1.60
S=N-~1
READ 100sY
SUM = SUM + S*Y
10 DEN = DEN + S#=§
SUM = SUM/DEN
PUNCH 101, SUM
CALL EXIT
100 FORMAT (27X9E1043)
101 FORMAT (5Xs17HMSDR/TIME SLOPE =F6e3)

END
C PROGRAM 4 INCRe DRIFT RATE ~ ENSEMBLE STATISTICS
*FANDKO504

DIMFENSION D(50+60)
1 READ 101 ((DUTed)e J=1960)s 1=19501
C COMPUTE INTREMINTAL NRIFT RATE
DO 6 I =1+50
DO 5 J =1+59
JJ=61-J ,
5 D(IsJJ) = DIIsJJ) - DUIsJJ=~1)
& PUNCH 1029 I19(D(19J)sJ=2+60) .
C COMPUTE IDR ENSEMBLE STATISTICS
PUNCH 104 '
PUNCH 105
DO 20 J=2,60
EMEAN =0,
EMSQ=0.
DO 10 I=1450
EMEAN = EMEAN + D(1,J)
10 EMSQ = EMSQ + D(IsJ)%%2
EMEAN = EMEAN/50.
EMSQ = EMSQ/50.
VAR = ((EMSQ-EMEAN*%#2)%504) /49
SD = VAR#%,5
20 PUNCH 1069+ J+EMEANJEMSQsVARsSD
GO TO0 1
101 FORMAT (10F741)
102 FORMAT (1XsI3/(10F7e1})
104 FORMAT (10X942HINCREMENTAL DRIFT RATE ENSEMBLE STATISFICS///)
105 FORMAT (4Xy4HTIMESGX s 4HMEAN12X 9 3HMSQ12X ¢ 3HVAR13Xs2HSD/ /)
106 FORMAT (4X913+4(6XsE942))
END
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C PROGRAM 1 DRIFT RATE ENSEMBLE STATISTICS

*#FANDKOS04

1

10

20

101
102
103
104

DIMENSION D(50+60)

READ 1Uls ((D{(IlsJ)sJ=1+160)91=1950)
PUNCH 102

PUNCH 103

DO 20 J=1+60

EMEA‘N = Oe

EMSQ = O.

DO 10 I = 1450

EMEAN = EMEAN + D(I,J)

EMSQ = EMSQ + D(IsJ)*%2

EMEAN = EMEAN/50.

EMSQ = EMSQ/50.

VAR = ((EMSQ —~ EMEAN®%2)%#50,) /49
SD = VAR##,5

PUNCH 1049 JsEMEANJEMSQsVARLSD

GO TO 1

FORMAT (10F7.1)

FORMAT (15X+30HDRIFT RATE ENSEMBLE STATISTICS///)
FORMAT (4Xs4HTIMEG6X » 4HMEAN12X s 3HMSQ12X 9 3HVAR13Xs2HSD/ /)
FORMAT (4X91394(5X9E10631))

END

r PROGRAM 2 DRIFT RATE ENSEMBLE STATISTICS - ZERO CORRECTION

#FANDKO504

1

10

20

101
102
103
104

DIMENSION D(50+60)

READ 101s ((D(I9J)eJ=1+60)91=1+50)
PUNCH 102

PUNCH 103

DO 5 I = 1450

DO 5 J = 1460

JJ = 61-J

D(IeJJ) = D(IsJJ) = D(Is1l)

DO 20 J=1,60

EMEAN = O

EMSQ = Oe.

DO 10 I = 150

EMEAN = EMEAN + D(1+J)

EMSQ = EMSQ + D(IsJ)#*x2

EMEAN = EMEAN/50.

EMSQ = EMSQ/50.

VAR = ((EMSQ ~ EMEAN*#2)%50,)/49,
SD = VAR##,5

PUNCH 1044 JsEMEANEMSQyVARSD

GO TO0 1

FORMAT (10F7.1)
FORMAT({12Xs46HDRIFT RATE ENSEMBLE STATISTICSsZERO CORRECTION///)
FORMAT (4Xs4HTIMEGX s 4HMEAN12X93HMSQL12X 93HVAR13X92HSD//)

FORMAT (4XsI3+s4(5XeEL1043))

END
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C

PROGRAM 5 INCRe DRIFT RATE - RUNNING RMS (TIME)

10

40

101
102
103
104
105
106

DIMENSION D(59})s RMS(59)s TRMS(59) |
DO 10 JU=14+59 : 1
TRMS(J) = Oe i
PUNCH 102

DO 30 N=1,50

READ 101y Is (D(J)s J=1959)

EL = O

DO 20 J=1»59

EL = EL + DUOY*D(D)

DEN = J

RMS(J) = SQRTF(EL/DEN)

TRMS( )Y = TRMS(J) + RMS(J)Y

PUNCH 103s Is (RMS(J)s J=1459)

COMPUTE ENSEMBLE RUNNINL Kmd>

PUNCH 104

PUNCH 105

DO 40 J=1,59

TRMS(J) = TRMS(J)/50.

PUNCH 106y Js TRMS{J)

CALL EXIT

FORMAT (1Xs13/(10FTe1}))

FORMAT (14Xs1THIDR — RUNNING RMS///)

FORMAT (1X+s4HGYROI3/(10F7e2))

FORMAT (/7//713X+26HIDR - ENSEMBLE RUNNING RMS///)
FORMAT (16Xs4HTIMESX+s3HRMS/)

FORMAT (16XeI333XeF763)

END
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C PROGRAM 6 INCRe DRIFT RATE - AUTOCORRELATION

DIMENSION D(59)s SUM(28)s ESUM(28)
DO 10 K=1928
10 ESUM(K) = Qe
PUNCH 102
DO 60 N=1,50
READ 101ls Is (D(J)s J=1+59)
DO 30 K=1,28
JJ=60~K
DEN=JJ
SUM(K ) =0,
DO 20 J=leJdJ
JK=J+K~-1
EL=D(J)*D( JK)
20 SUM(K) = SUM(K) + EL
SUM(K) = SUM{K)/DEN
30 ESUM(K) = ESUM(K) + SUM(K)
PUNCH 103, Iy SUM(1)
EMSQ = SUMI(1)
DO 40 K=1,28
40 SUMIK) = SUM(K)/EMSQ
60 PUNCH 104y (SUM(K)s K=1928)
C COMPUTE ENSEMBLE AUTOCORRELATIONS
PUNCH 105
EMSQ = ESUM(1)/50,
PUNCH 106+ EMSQ
PUNCH 107
EMSQ = ESUMI(1)
DO 50 K=1,28
SIUN ey - oEermM(K) /1 EMSQ
KK=K-1
50 PUNCH 108y KKs ESUMI(K)
CALL EXIT
101 FORMAT (1XsI3/(10F7411)
102 FORMAT (14Xs25HNORMALIZED IDR AUTOCORRS.//7)
103 FORMAT (1Xs4HGYROI396Xs THMSIDR =F6,42)
104 FORMAT (10F742)
105 FORMAT (///7/13X+34HNORMALIZED ENSEMBLE IDR AUTOCORRS.///)
106 FORMAT (4Xs THMSIDR =F6e2//)
107 FORMAT (16X»10HTIME DIFF.5Xs15HAUTOCORRELATION/)
108 FORMAT (19X»134512XsF7e3)
END
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PROGRAM 7 INCRe DRIFT RATE - FREQUENCY DISTRIBUTION

101
102
103
104

DIMENSION D(59)s KSUM(33)
DO 1 K=1,33

KSUM(K) = Oe

PUNCH 102

DO 8 L=1.50

READ 101s Ie (D(J)s J=1459)
DO 8 J=1+59

IF (D(J)) 394,44

M=]

N=0

GO 70 5

M=0

N=1

DO 6 K=1,17

KM=18-K

KN=16+K

BB=K~1

B=ze1l5 + «3%BB

IF (ABSFI(D{J)) —~ B) Ts6+6
CONTINUE

PUNCH 103y 19 D(J)ys J

GO 10O 8

KSUM(KM) = KSUM(KM) + M
KSUM(KN) = KSUM(KN) + N
CONTINUE

PUNCH 104y (KSUM(K)y K=1933)
CALL EXIT

FORMAT (1XsI13/(10F7el))
FORMAT (5X929HINCRe DRIFT RATE FREQe DISTRG/7/)
FORMAT (10X9I394XeFTelsb6XsI3)
FORMAT (/7(20Xs14))

END
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C PROGRAM 8 DRIFT RATE CORRELATION

*FANDKOS504
DIMENSION D(504+60)
1 READ 101s ((D{I9J)sJ=1960)91=1+50)
DO 10 I=1+50
DO 10 J=1+60
JJ = 61-J
10 D(IsJJ) = D(IsJJ)=D(Is1)
PUNCH 102
DO 30 J=6+41,+5
N = J-1
PUNCH 103, N
PUNCH 104
K= 61~-J
DO 30 JJ=1sK
SUM=0,
JK = J+JJ-2
DO 20 I=1,50
EL = D(1+J) * D(IsJK+1)
20 SUM = SUM+EL
SUM = SUM/50.
30 PUNCH 105, JKsSUM
GO TO 1
101 FORMAT (10F7.1)
102 FORMAT (10X+36HDRIFT RATE ENSEMBLE AUTOCORRELATIONS///)
103 FORMAT (///3X+15HACFS WITH TIME 13/7)
104 FORMAT (TXs4HTIME11X»3HACF//)
105 FORMAT (7X91399XsF7e2)
END
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